
The Ultimate

React.js Guide

Learning JavaScript libraries and frameworks can be

overwhelming. There are many libraries to choose

from, and no proper step-by-step guides that’ll teach

you how to use these libraries to their fullest potential.

That’s why, in this guide, you’ll learn the most popular

JavaScript library, used by hundreds of thousands of

developers worldwide - .React.js

This guide covers the complete React.js roadmap,

JavaScript prerequisites, essential React.js concepts,

and project ideas that you can build & deploy and put

up on your portfolio and get a job.

What’s in the guide?

React.js is a front-end JavaScript library for building

user interfaces. It was developed by Facebook and is

maintained by Facebook and the open-source

community.

React.js is a phenomenal library that is easy to

understand, has excellent cross-platform support,

has a fantastic community, and is one of the most

loved libraries out there.

There are also two great React.js competitors: Vue.js,

Angular. These libraries and frameworks are mainly

used to create fast and efficient Single Page

Applications. Although these are great technologies,

taking a quick look at Google trends, we can clearly

see that React.js is still in the lead by far.

Introduction to React.js

You might be wondering, what are the prerequisites to

learn such a great JavaScript library?

Before learning React, you should have a

good understanding of these JavaScript
topics:

Do not jump straight into React.js without

understanding the topics i've
mentioned below.

Basic Syntax

ES6+ features

Arrow functions

Template literals

There’s only one prerequisite and that is - .JavaScript

JavaScript prerequisites

Array Methods

Object property shorthand

Destructuring

Spread
operator

Promises

Promises

Async/Await syntax

Import and export syntax

JavaScript prerequisites

File & Folder structure

Components

JSX

Props

State

Events

Styling

Conditional Rendering

React.js Roadmap

Basic things to learn in React.js

useState

useEffect

useRef

useContext

useReducer

useMemo

useCallback

React.js Roadmap

Learn about React.js Hooks -

the essential hooks to learn:

React.js Roadmap

Then learn some of the React.js

UI Frameworks

Material UI

Ant Design

Chakra UI

React Bootstrap

Rebass

Blueprint

Semantic UI React

React.js Roadmap

Learn to use some of the most

popular React.js packages

React Router

React Query

Axios

React Hook Form

Styled Components

Storybook

Framer Motion

React.js Roadmap

Learn how to manage state

with state management tools

Redux

MobX

Hookstate

Recoil

Akita

React.js Roadmap

More things to learn after

learning React.js fundamentals

Next JS

Gatsby

TypeScript

React Native

Electron

File & Folder structure

Static Site Generation

Server Side Rendering

Incremental Static Regeneration

Dynamic Pages

CSS / SASS Modules

Lazy loading Modules

API Routes

React.js Roadmap

Important things to learn in Next.js

React.js Roadmap

Learn to test your React.js

applications with some of

these libraries/frameworks

React.js Roadmap

Learn to deploy your React.js

applications

Components

React.js Concepts

React JS is a component-based front-end library

which means that all parts of a web application are

divided into small components.

A component is a small piece of the User interface.

Every React.js application is a tree of components.

Components let you split the UI into independent,

reusable parts. So when you're building an

application with React, you'll build independent and

reusable components, and then you'll combine

them to build a full fledged web application.

Components explanation

Let's take an example to represent what are

React.js components:

This website is entirely built in React.js. So imagine

we're building this website. How would we make it?

filmpire.netlify.appFirst project of the JSM Pro Platform

Components explanation

Firstly we'll split the User Interface into small

components like Sidebar, Search bar, and Movies,

including several single movie components with

names and ratings.

Sidebar Movies

Single movie component

Search bar

In React, there are two types of
components -

&
 Functional

Components Class Component

Class-based Component

Components explanation

Functional Component

Components explanation

If you don't understand fully know how to use

classes, what are the class methods, and what does

'extends' means, don’t you worry at all. Class based

are not being used at all anymore and they were

replaced by their simpler counterparts

Components explanation

That's it! This is a React Component. You can see

how easy it is.

You might be thinking, why are we writing HTML

when returning something.

This tag syntax is neither a string nor HTML.

It is called .JSX

JSX - JavaScript XML

JSX is a syntax extension to JavaScript. It is used in

React to describe what the UI should look like. JSX

may remind you of a template language, but it

comes with the full power of JavaScript.

JSX produces React . JSX forms the core

syntax of React. So, to learn it better, let’s dive into

the code and set up our first React.js application

"elements"

JSX - JavaScript XML

There are a few differences between HTML & JSX,

although generally it’s incredibly similar. Some of

the differences are:

Writing className instead of class,

Because the class is a reserved keyword in

JavaScript. Since we use JSX in React, the extension

of JavaScript, we have to use 'className' instead of

the class attribute.

className class

JSX - JavaScript XML

Same as class, there’s also one more reserved

keyword of JavaScript that is used in HTML. That is

the ‘for’ attribute used with the <label> element.

So, to define attribute in JSX, you do it as for ‘htmlFor’

<label > =””htmlfor <label >for=””

JSX - JavaScript XML

One of the major differences between HTML and JSX

is that in JSX, you must return a single parent

element, or it won't compile.

You can use ‘React fragments’ instead of divs

You can also use divs instead of React fragments,

it’s not necessary to use a particular, but using

‘React fragments’ makes the code more readable.

<> </>... <div> </div>...

JSX - JavaScript XML

You can implement JavaScript directly in JSX. To use

JavaScript expressions, we use curly brackets ...{ }

Whereas in HTML, you need a script tag or an

external JavaScript file to implement JavaScript

What are Props?

To make our components accept different data, we

can use props. Props are arguments passed into

React components. They are passed to components

via HTML attributes.

We use props in React to pass data from one

component to another (from a parent component

to child components), But you can't pass props

from a child component to parent components.

Data from props is read-only and cannot be

modified by a component receiving it from outside.

Props is just a shorter way of saying .properties

What is State?

A State is a plain JavaScript object used by React to

represent a piece of information about the

component's current situation. It's managed in the

component (just like any variable declared in a

function).

State data can be modified by its own component,

but is private (cannot be accessed from outside)

The state object is where you store property values

that belongs to the component. When the state

object changes, the component re-renders.

What is Events?

An event is an action that could be triggered as a

result of the user action or a system-generated

event. For example, a mouse click, pressing a key,

and other interactions are called events.

React events are named using camelCase,

rather than lowercase.

With JSX you pass a function as the event

handler, rather than a string.

Handling events with React elements is similar to

handling events on DOM elements. There are just

some syntax differences.

How to add Events?

What are React.js Hooks?

Hooks are a new addition to React in version 16.8

that allows you to use state and other React

features, like lifecycle methods. Using hooks makes

your code cleaner.

Hooks don't work inside classes — they let you use

React without classes.

Hooks let you always use functions instead of having

to constantly switch between functions, classes,

higher-order components, and render props

Nowadays, hooks are widely used. So you should

start using it as well. You can also create your own

Hooks to reuse stateful behavior between different

components.

Project Ideas

Real Estate App

Cryptocurrency App

Travel Companion App

ECommerce Web Shop

Voice Assistant News App

Portfolio Website

Voice Powered Budget Tracker

Blog App with CMS

Project Ideas

Social Media Web App

Modern UI/UX Website

Chat App

Video Chat App

Progressive Web Apps

Covid-19 Tracker App

Google Search Clone

Premium Landing Page

That’s all for this guide!

So never stop learning!

There is no end of learning in web development

there’s always something to learn.

Thank You for your attention, Subscribe to my youtube

channel for more Advanced Tutorials.

jsmasterypro javascriptmastery

- JavaScript Mastery

Thank you so much

